Débouchés

La formation mène au diplôme d’ingénieur·e du Conservatoire National des Arts et Métiers, spécialité matériaux, reconnu par la CTI et inscrit au RNCP.

Ce diplôme confère le grade de master (Bac+5, 300 ECTS) reconnu internationalement et permet d’exercer le métier d’ingénieur dans le secteur privé ou public, ou bien d’accéder à une formation post-master (doctorat, MBA, mastère spécialisé).

L’insertion professionnelle des ingénieur·e·s du Cnam est très bonne (90% d’emploi après 6 mois, salaire moyen : 34k€/an).

Secteurs d’activité

  • Aéronautique et spatial (40%)
  • Énergie (18%)
  • Défense (12%)
  • Métallurgie (12%)
  • Ferroviaire (6%)
  • BTP (6%)
  • Micro-électronique (6%)

Métiers

  • Ingénieur·e matériaux
  • Ingénieur·e méthodes
  • Ingénieur·e recherche et développement
  • Ingénieur·e procédés
  • Ingénieur·e produit
  • Ingénieur·e chef de projet
  • Ingénieur·e qualité
  • Ingénieur·e bureau d’études

L’ingénieur⋅e matériaux du Cnam est capable d’effectuer, dans le milieu industriel, dans un laboratoire de recherche et développement, un bureau d’études, une plate-forme d’essais, un travail très diversifié permettant la prévision et la conception de systèmes complexes en respectant une démarche qualité et en tenant compte des enjeux du XXIème siècle.

Compétences

La certification implique la vérification des qualités suivantes pour l’ingénieur⋅e matériaux du Cnam :

  • La connaissance et la compréhension d’un large champ de sciences fondamentales et les capacités d’analyse et de synthèse qui leur sont associées, en effet l’ingénieur⋅e matériau se situe de fait à la croisée de multiples champs disciplinaires, de la chimie à la mécanique, en passant par l’informatique, les approches spécifiques à chaque discipline font partie intégrante de sa formation ;
  • L’aptitude à mobiliser les ressources du champ scientifique et technique du génie des matériaux, notamment en maîtrisant les concepts sous-jacents aux techniques modernes d’analyse et de caractérisation des matériaux ;
  • La maîtrise des méthodes et des outils de l’ingénieur⋅e : identification, modélisation et résolution de problèmes même non familiers et incomplètement définis, l’utilisation des outils informatiques, l’analyse et la conception de systèmes, notamment en implémentant les méthodes et outils de modélisation permettant la simulation numérique des propriétés d’usage des pièces et des procédés ;
  • La capacité à concevoir, concrétiser, tester et valider des solutions, des méthodes, produits, systèmes et services innovants, en adoptant par exemple une approche descendante partant du cahier des charges fonctionnel du produit final pour choisir et implémenter des solutions matériaux et procédés ;
  • La capacité à effectuer des activités de recherche, fondamentale ou appliquée, à mettre en place des dispositifs expérimentaux, à s’ouvrir à la pratique du travail collaboratif, car la R&D n’est jamais loin, si ce n’est même partie intégrante, de l’activité d’un ingénieur matériaux, une innovation dans le domaine des matériaux pouvant avoir un potentiel disruptif fort sur une industrie donnée ;
  • La capacité à trouver l’information pertinente, à l’évaluer et à l’exploiter, afin d’assurer la veille technologique, de suivre les évolutions des recherches et les avancées technologiques permettant l’introduction de nouveaux matériaux ou de nouvelles méthodes industrielle (conception, fabrication, contrôle) ;
  • L’aptitude à prendre en compte les enjeux de l’entreprise : dimension économique, respect de la qualité, compétitivité et productivité, exigences commerciales, intelligence économique, par exemple en choisissant des matériaux adaptés aux normes qualité, aux contraintes économiques et aux démarches de développement soutenable ;
  • L’aptitude à prendre en compte les enjeux des relations au travail, d’éthique, de responsabilité, de sécurité et de santé au travail, en agissant par exemple en tant que référent QHSE au sein de l’entreprise, mais aussi en étant prescripteur de solutions techniques pour la gestion de fin de vie des produits et du recyclage, prenant ainsi en compte les enjeux environnementaux ;
  • L’aptitude à prendre en compte les enjeux et les besoins de la société, en conduisant des projets industriels impliquant le choix et l’implémentation de solution matériaux et de leurs procédés de mise en œuvre, par l’optimisation de ces derniers ainsi que de l’ensemble de la chaîne de valeur, sans oublier de mener l’analyse de risques afférents et en se conformant, voire en anticipant, les normes de sécurité en vigueur ;
  • La capacité à s’insérer dans la vie professionnelle, à s’intégrer dans une organisation, à l’animer et à la faire évoluer : exercice de la responsabilité, esprit d’équipe, engagement et leadership, management de projets, maîtrise d’ouvrage, communication avec des spécialistes comme avec des non-spécialistes, en devenant référent et prescripteur de solutions matériaux au sein de l’organisation ;
  • La capacité à entreprendre et innover, dans le cadre de projets personnels ou par l’initiative et l’implication au sein de l’entreprise dans des projets entrepreneuriaux, en effet, de par sa formation multidisciplinaire, l’ingénieur matériau est à même de mener des projets innovants sortant des carcans traditionnels de l’ingénierie ;
  • L’aptitude à travailler en contexte international : maîtrise d’une ou plusieurs langues étrangères et ouverture culturelle associée, capacité d’adaptation aux contextes internationaux, notamment par sa capacité à communiquer couramment à l’oral comme à l’écrit en anglais, de par sa formation scientifique forte, domaine de la connaissance dominé par la langue anglaise ;
  • La capacité à se connaître, à s’auto-évaluer, à gérer ses compétences, à opérer ses choix professionnels : le large panel de compétences de l’ingénieur matériaux lui confère une versatilité et une adaptabilité potentiellement forte au cours de sa carrière, du bureau d’études aux méthodes, en passant par la R&D, l’ingénierie technique ou les achats, de fait l’introspection est une étape nécessaire.